¹⁶N $β^-α$ decay **2016Re01** Type Author Citation Literature C Full Evaluation J. H. Kelley, J. E. Purcell and C. G. Sheu NP A968, 71 (2017) 1-Jan- Parent: 16 N: E=0; J^{π} =2 $^{-}$; $T_{1/2}$ =7.13 s 2; $Q(\beta^{-}\alpha)$ =3259.0 23; $\%\beta^{-}\alpha$ decay=1.49×10 $^{-3}$ 5 ¹⁶N-T_{1/2}: from Adopted Levels of ¹⁶N in ENSDF database. ¹⁶N-O(β ⁻α): from (2017Wa10). result of (2016Re01). 2016Re01: XUNDL dataset compiled by TUNL, 2016. The β -delayed α decay feeds $^{12}C_{g.s.}$ from $^{16}O^*(8871,9585,9845)$. While the total intensity to $^{16}O^*(8871)$ was found with a total β branch of 1.0% in (1959Al06,1984Wa07), these three states contribute only a tiny fraction of intensity in α decay to ^{12}C . The decay to $^{16}O^*(9585)$ proceeds entirely via α decay and dominates the delayed α spectrum. Three results are reported for this branch's intensity, $I\alpha=(1.20\ 5)\times 10^{-5}\ (1961Ka06)$, $(1.49\ 5)\times 10^{-5}\ (2016Re01)$, and $(1.3\ 3)\times 10^{-5}\ (1993Zh13)$. The result of (1961Ka06) was obtained by α and β counting the ^{16}N activity produced in the (p,n) activation of a flowing stream of CO_2 ; the results depended on the flow-rate, ^{16}N lifetime, relative detection efficiencies, etc.. In (2016Re01), the ^{16}N ions were implanted and identified in a segmented ΔE -E telescope at KVI. After implantation, the ^{16}N decayed and the decay α particles were counted. The branching ratio was determined by comparing the number of ^{16}N nuclei implanted into the detector with the number of α particles measured. The selection of a thin, high-granularity detector decreased the sensitivity of the measurement to ambiguous Since the β -delayed α branching via $^{16}\text{O}*(9598)$ is the strongest, the branching ratios of $^{16}\text{O}*(8871,9845)$ reported in (1974Ne10,1969Ha42) were reported relative to the $^{16}\text{O}*(9585)$ β - α intensity given in (1961Ka06). In the original works I α =(4.6 9)×10⁻⁸% and (6.5 14)×10⁻⁷% were deduced for the branching ratios for delayed α emission from $^{16}\text{O}*(8871,9845)$, respectively (1974Ne10,1969Ha42) using I α (9585)=(1.20 5)×10⁻⁵ (1961Ka06). The revised values using the new I α (9598)=1.49×10⁻⁵ (2016Re01) are given below. β -particle pileup events; an important consideration since there are roughly $10^4 \beta$ particles for each α particle. We accept the The α decay of $^{16}\text{O}^{-1}(8871)$ is parity forbidden, and detailed measurements of this decay branch have set limits on irregular parity amplitudes in the wavefunction (1961Ka06,1969Ha42,1970Jo25,1974Ne10). In (1974Ne10) Γ_{α} =(1.03 28)×10⁻¹⁰ eV is determined for $^{16}\text{O}^{+1}(8871)$. In (2016Re01), significant discussion on the astrophysical impact is included. ¹²C Levels $\frac{\text{E(level)}^{\dagger}}{0.0} \quad \frac{\text{J}^{\pi \dagger}}{0^{+}}$ † From Adopted Levels. ## Delayed Alphas (12C) | E(α) | E(12C) | $I(\alpha)^{\dagger}$ | E(16O) | Comments | |----------|--------|--------------------------|--------|--| | 1282.5 4 | 0.0 | 5.71×10 ⁻⁸ 11 | 8871 | Inferred from present branching(9598)= 1.49×10^{-5} 5 and (1974Ne10). | | 1827.1 8 | 0.0 | $1.49 \times 10^{-3} 5$ | 9598 | | | 2011.9 4 | 0.0 | 8.1×10^{-7} 15 | 9845 | Inferred from present branching(9598)= 1.49×10^{-5} 5 and (1969Ha42). | [†] Absolute intensity per 100 decays. ## 16 N $\beta^ \alpha$ decay 2016Re01 ## Decay Scheme $I(\alpha)$ Intensities: $I(\alpha)$ per 100 parent decays